Session 2

Design Strategies: Incorporating Agroecological Strategies

Speaker: Steve Moore

- Bio-intensive Farming
 - Millennial-old production technique
 - Example: Russian dachas
 - Permanent beds and pathways
 - Low-tech, hand-based production
- The Key Elements of Bio-intensive Farming
 - Deep soil development
 - Close plant spacing
 - Compost production efficiency
 - Multi-cropping
 - Carbon Farming
 - Diet Farming
 - Open Pollinated Seeds
 - o Holistic System Design
- Bio-intensive farm management involves a combination of calorie-dense food and food that is land-efficient
 - Thinking in terms of nutrition and not just yield
 - Land use efficiency
 - Kitchen efficiency
 - Nutrient density: calories per biomass
 - Compost crop efficiency
 - Value of crop includes the relative potential of its biomass as compost
 - Diet spreadsheets can track energy ratio of cultivated crops
 - Amount of energy expended tending to crops vs. amount of energy gained from consuming crops
 - Involves calculating carbohydrate, amino acid, and vitamin profile of each crop grown
 - Involves calculating caloric value of physical labor
- Ideal Bio-intensive Diet
 - Grain crops (60%)
 - Root crops (30%)
 - Vegetable crops (10%)
- Open-pollinated seeds are critical for preserving genetic diversity
 - Traits for local pests and diseases could be in this germplasm
- Crops can also evaluated for their calorie production per gallon of water
 - o Sorghum: high calories per gallon of water
 - Parsley: low calories per gallon of water

- Additional Benefits of Bio-intensive Agriculture
 - o Increased soil organic carbon
 - o Reduced greenhouse gas emissions from agricultural activities
 - o Adaptable to climate change